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Significance of KATP channels, L-type Ca2+

channels and CYP450-4A enzymes in oxygen
sensing in mouse cremaster muscle arterioles
In vivo
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Abstract

Background: ATP-sensitive K+ channels (KATP channels), NO, prostaglandins, 20-HETE and L-type Ca2+ channels
have all been suggested to be involved in oxygen sensing in skeletal muscle arterioles, but the role of the
individual mechanisms remain controversial. We aimed to establish the importance of these mechanisms for
oxygen sensing in arterioles in an in vivo model of metabolically active skeletal muscle. For this purpose we utilized
the exteriorized cremaster muscle of anesthetized mice, in which the cremaster muscle was exposed to controlled
perturbation of tissue PO2.

Results: Change from “high” oxygen tension (PO2 = 153.4 ± 3.4 mmHg) to “low” oxygen tension (PO2 = 13.8 ±
1.3 mmHg) dilated cremaster muscle arterioles from 11.0 ± 0.4 μm to 32.9 ± 0.9 μm (n = 28, P < 0.05). Glibenclamide
(KATP channel blocker) caused maximal vasoconstriction, and abolished the dilation to low oxygen, whereas the
KATP channel opener cromakalim caused maximal dilation and prevented the constriction to high oxygen. When
adding cromakalim on top of glibenclamide or vice versa, the reactivity to oxygen was gradually restored. Inhibition
of L-type Ca2+ channels using 3 μM nifedipine did not fully block basal tone in the arterioles, but rendered them
unresponsive to changes in PO2. Inhibition of the CYP450-4A enzyme using DDMS blocked vasoconstriction to an
increase in PO2, but had no effect on dilation to low PO2.

Conclusions: We conclude that: 1) L-type Ca2+ channels are central to oxygen sensing, 2) KATP channels are
permissive for the arteriolar response to oxygen, but are not directly involved in the oxygen sensing mechanism
and 3) CYP450-4A mediated 20-HETE production is involved in vasoconstriction to high PO2.

Keywords: Hypoxic vasodilation, Hyperoxic vasoconstriction, Oxygen sensing, ATP-sensitive K+ channels, 20-HETE,
L-type Ca2+ channels, Prostaglandin, NO-synthase, Skeletal muscle, Arterioles
Background
In the microcirculation, the arterioles regulate tissue
blood flow to maintain a close relationship between
oxygen supply and demand [1]. Changes in oxygen
tension due to changes in the metabolic activity of tis-
sues, particularly in skeletal muscle undergoing vast
changes in performance, are believed to be crucial in the
regulation of local blood flow. For example, skeletal
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muscle arterioles dilate/constrict when exposed to a
decrease/increase in oxygen tension, thereby controlling
the local blood flow to the tissue [1,2].
The mechanisms by which changes in oxygen tension

are sensed and converted into downstream signals that
lead to vasomotor responses is known as oxygen sensing.
Because of the importance of oxygen sensing for adjusting
skeletal muscle blood flow, several studies have sought to
determine its underlying molecular mechanisms. A num-
ber of studies have provided evidence which suggests the
involvement of ATP-sensitive K+ channels (KATP channels)
in the process [3-6], but a similar number of studies from
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other groups have failed to find evidence to support this
notion [7-9]. As an alternative it has been suggested that
hypoxia may act on the voltage-dependent L-type Ca2+

channels reducing the Ca2+ influx into the vascular smooth
muscle cells (VSMCs) causing hypoxic vasodilation [9,10].
Nitric oxide (NO) and certain prostaglandins are known to
be important endothelium-derived vasodilators and may
therefore also play a role in hypoxic vasodilation.
Hypoxic vasodilation may be viewed as a single O2-

sensitive effector mechanism operating to continuously
modify the basal tone of the vessel. However, the oper-
ation of dual control mechanisms, i.e. both hypoxic
vasodilation and a separate mechanism primarily acti-
vated during high oxygen tension to cause vasoconstric-
tion may contribute to an even more elaborate and
efficient regulation of local blood flow. The vasocon-
strictor 20-hydroxy-eicosatetraenoic acid (20-HETE),
which is a ω-hydroxylation product of arachidonic acid
produced by the CYP450-4A enzyme system in the pres-
ence of molecular oxygen, may be such a mechanism
involved in hyperoxic vasoconstriction [11-14].
Many studies have been performed in vitro, and have

focused on determining the role of a single mechanism
for oxygen sensing. However, by examining several pro-
posed mechanisms in an in vivo animal model during
controlled physiological conditions we are able to study
the integrated roles of the different mechanisms for
oxygen sensing.
In the present study, we used the exteriorized cremas-

ter muscle in anesthetized male mice. The influence of
experimental procedures was minimized by doing only
mild surgery under the influence of neurolept anesthesia,
which is not known to have any major effects on cardio-
vascular function [15], and the diameter responses to
local tissue oxygen perturbations were observed by
intravital microscopy.
Since considerable controversy remains regarding the

specific mechanisms responsible for oxygen sensing in
skeletal muscle, the main purpose of this study was to
address the specific roles of KATP channels, NO, prosta-
glandins, 20-HETE and L-type Ca2+ channels in this
process.

Methods
Cremaster muscle preparation
All procedures and protocols were approved by the Danish
Animal Care and Use Committee. Male C57BL/6J mice
(body weight = 27.6 ± 0.7 g, n = 28; Taconic, DK-8680 Ry,
Denmark) were anesthetized by i.p. injection with a mix-
ture of droperidol (30.8 mg/kg), midazolam (4.0 mg/kg)
and fentanyl (0.2 mg/kg) dissolved in saline (total volume
given was 20 ml/kg). This same anesthetic mixture was
used to maintain anesthesia, by continuous i.v. infusion
with the rate of 20 ml/kg/h (syringe pump model 100,
serial no. 671, KD Scientific, U.S.A). The mice were
tracheotomized to maintain airway patency and the jugular
vein was cannulated to allow for infusion of anesthesia and
saline, while resting on top of the heated microscope stage.
Using gentle dissection, the cremaster muscle with its
blood perfusion intact was placed flat on top of a coverslip
and fixed by sutures (Prolene 6-0, Ethicon Inc., Somerville,
New Jersey, U.S.A.) attached to a silicone bank.

Superfusion of the cremaster muscle
The Krebs’ solutions (118.4 mM NaCl, 4.8 mM KCl,
2.5 mM CaCl2, 1.2 mM MgSO4, 25.0 mM NaHCO3 and
1.2 mM KH2PO4, pH range 7.35-7.45) were vigorously bub-
bled with 95% N2/5% CO2 or 21% O2/74% N2/5% CO2 gas
mixtures to yield low or high oxygen tension Krebs’ solu-
tions respectively. To minimize gas exchange between the
superfusate in the supply tubing and the atmospheric air,
the length of the tubing was kept at a minimum and thick-
walled polyurethane tubing was used (Flexible Tubing 85
Durometer Polyurethane AP01T122PENA, Ark-Plas Prod-
ucts, Inc. Flippin, Arkansas). The superfusate was heated
through an inline heater system (Inline heater Model SH-
27B, automatic temperature controller TC-324B, Warner
Instrument Corporation, Hamden, Connecticut) to a
temperature of 34-36°C.

Vessel diameter measurement
The microcirculation of the cremaster muscle was visu-
alized using a motorized Olympus BX50WI microscope
with a fixed stage enabling free positioning of the 4× air-
or 20× water-immersion objectives on top of the exteri-
orized cremaster muscle. The field was viewed on a
monitor (Triniton, PWM 1442 QM, Sony, Tokyo, Japan)
using a monochrome CCD camera (CCD72S, Dage-MTI
Michigan City, IN), and images were recorded on a
HDD-recorder (Pioneer DVD recorder DVR-530H) for
later off-line analysis. The final magnification (20× ob-
jective) of the image was ~700× and the final pixel size
was ~0.6 μm. The vessel diameter of the arteriole was
measured offline as the external diameter in microme-
ters (μm).

Oxygen tension measurement
A fiber-optic oxygen microsensor system (Tapered tip
sensor, tip diameter < 50 μm, Microx TX3 Oxygen
Meter, PreSens, Regensburg, Germany) was used to
measure oxygen tensions in the cremaster muscle
microcirculation. The oxygen microsensor consists of a
fiber-optic cable with a luminophore at the tip. The
luminophore is excited by photons from the oxygen
meter. Depending on the presence of molecular oxygen,
either photons are reemitted from the luminophore and
these are subsequently registered by the oxygen meter,
or the energy from the activated luminophore is
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transferred to the oxygen molecules in the surrounding
solution. Thus, the probe does not consume oxygen dur-
ing the measurements, and consequently, does not by it-
self affect the oxygen levels within the cremaster muscle
tissue. Calibration of the microsensor was performed
with a two-point calibration in oxygen-free water pre-
pared by diluting 4 g sodium dithionite (Na2S2O4) in
60 ml water in a beaker, and water vapor-saturated air
prepared by placing wet cotton wool in another beaker.
The output of the oxygen sensor is given as the partial
oxygen tension in mmHg. All oxygen tension measure-
ments were done with the tip of the oxygen microsensor
placed on top of the cremaster muscle in the intersec-
tion between the cremaster muscle and the superfusate
in close proximity (< 100 μm) to the arterioles under
study. The tip, which is the active part of the oxygen mi-
crosensor, was always covered by Krebs’ solution and
continuous measurements were done throughout the
whole experiment with a 1 Hz sampling rate.

Drugs
To study the mechanisms of oxygen sensing, different
drugs were used. Cromakalim (1 and 5 μM), an activator
of KATP channels, glibenclamide (10 and 100 μM), an in-
hibitor of KATP channels and nifedipine (3 and 30 μM), a
Ca2+ antagonist, which inhibits voltage-dependent L-
type Ca2+ channels, were used to study the role of KATP

channels and L-type Ca2+ channels. Dibromo-dodecenyl-
methylsulfimide (DDMS, 10 μM), an inhibitor of the
cytochrome P450-4A enzyme system (CYP450-4A), was
used to study the role of 20-HETE. The role of prosta-
glandins was studied by using indomethacin (28 μM), an
inhibitor of cyclooxygenase. L-NAME (100 μM), an
inhibitor of NO-synthases, was used to study the role of
NO. Papaverine (100 μM), a smooth muscle cell relax-
ant, was used to maximally dilate the arterioles to obtain
the passive diameter of the arterioles. Cromakalim,
glibenclamide and indomethacin were dissolved in di-
methyl sulfoxide (DMSO, 0.3%) prior to adding to the
Krebs’ solution. The other drugs were dissolved directly in
Krebs’ solution. Cromakalim, glibenclamide, indomethacin,
L-NAME, nifedipine and papaverine were bought from
Sigma-Aldrich, Copenhagen, Denmark, whereas DDMS
was bought from Cayman chemical, Michigan, USA.

Experimental procedures
After preparation of the exteriorized cremaster muscle,
the tissue was superfused with low oxygen Krebs’ solu-
tion and the preparation was allowed to rest for the next
15-20 minutes to obtain steady state. Subsequently,
hyperoxic vasoconstriction and hypoxic vasodilation was
induced by superfusing the cremaster muscle with
Krebs’ solution containing high or low oxygen tension,
respectively. Among several cremaster muscle arterioles
(diameter < 40 μm) showing both hyperoxic vasocon-
striction and hypoxic vasodilation, one or two arterioles
were randomly picked for further study.
The experimental protocol was as follows. During the

control period the cremaster muscle was exposed to low
oxygen tension followed by high oxygen tension two or
three times. Then the cremaster muscle was exposed to
low oxygen tension and high oxygen tension in the
presence of drugs, and this was repeated at least once.
In some experiments two different drugs were added, in
other experiments cumulative concentrations of the
same drug were added. Afterwards the cremaster muscle
was exposed to low oxygen and high oxygen tensions
without drugs (wash-out period). At the end of the
experiments papaverine was superfused to yield the
maximal vessel diameter.

Data analysis
One or two arterioles were studied per mouse and the
outer vessel diameters (D) were measured. ΔD =
Dlow oxygen – Dhigh oxygen, where Dlow oxygen is vessel diam-
eter during low oxygen tension and Dhigh oxygen is vessel
diameter during high oxygen tension. All results are
presented as mean ± SEM. Statistical comparisons were
performed by paired two-tailed Student’s t-test or one-
way ANOVA repeated measures with Holm-Sidak
method as post-hoc analysis. P-values < 0.05 were con-
sidered as statistically significant.

Results
Superfusion with either low or high oxygen Krebs’ solu-
tions had a pronounced effect on the arteriolar diameter
and hence on local blood flow to the mouse cremaster
muscle. The preparations were stable for 2-3 hours,
enough time to study vasomotor responses under differ-
ent experimental conditions. Images in Figure 1A-C
show a representative mouse cremaster muscle arteriole
during exposure to low (A), high oxygen tensions (B)
and during exposure to a 100 μM papaverine (C).
During low oxygen tension (PO2 = 4.6 mmHg) the exter-
nal diameter of the arteriole was 32.0 μm. During high
oxygen tension (PO2 = 163.4 mmHg) the arteriole was
constricted with external diameter of 9.8 μm. Exposure
to 100 μM papaverine (PO2 = 42.6 mmHg) yielded a
maximal external diameter of 35.1 μm. Table 1 summa-
rizes the effects on the vasomotor responses during
superfusion with low (PO2 = 13.8 ± 1.3 mmHg) and high
oxygen tensions (PO2 = 153.4 ± 3.4 mmHg) and 100 μM
papaverine (PO2 = 21.5 ± 1.9 mmHg) from all experi-
ments conducted in this study (n = 28).

Vehicle control
DMSO was used to dissolve cromakalim, glibenclamide
and indomethacin. DMSO at concentrations up to 0.3%



Figure 1 Representative images of a mouse cremaster arteriole during exposure to A) a low oxygen tension, B) a high oxygen tension
and C) during application of 100 μM papaverine.
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was used in the final Krebs’ solution. To ensure that
DMSO did not affect the vascular responses, we tested if
there was any difference between the control without
DMSO vs. superfusion with Krebs’ solution containing
0.3% DMSO (See Figure 2) (n = 3). During the control,
change from high oxygen (PO2 = 147.6 ± 6.0 mmHg) to low
oxygen tension (PO2 = 16.5 ± 1.7 mmHg) caused a vasodila-
tion (ΔD= 19.9 ± 0.9 μm). In the presence of 0.3% DMSO,
change from high oxygen (PO2 = 145.3 ± 6.5 mmHg) to low
oxygen tension (PO2 = 20.2 ± 2.2 mmHg) caused a similar
vasodilation (ΔD= 19.3 ± 1.5 μm) as during the control
(p = 0.48, n = 3). Application of 100 μM papaverine yielded
the maximal vessel diameter 32.0 ± 1.4 μm.

Role of KATP channels
Figure 3 shows the effects of pharmacological modifica-
tion of KATP channel activity using glibenclamide and
cromakalim. During the control period, change from
high oxygen (PO2 = 148.4 ± 10.2 mmHg) to low oxygen
tension (PO2 = 12.7 ± 2.6 mmHg) caused vasodilation
(ΔD = 21.2 ± 1.9 μm). Subsequent application of 5 μM
glibenclamide inhibited vasodilation during low oxygen
tension (PO2 = 9.6 ± 4.6 mmHg). This inhibition could
be reversed stepwise by additional application of 1 and
5 μM cromakalim. After a wash-out period lasting
~10 minutes, the vessels regained the same degree of
responsiveness to low and high oxygen tensions as
during the control period. Application of 100 μM papa-
verine yielded the maximal vessel diameter 36.8 ± 1.7 μm
(n = 5).
To examine a potential effect of order of application,

cromakalim was now applied prior to glibenclamide. In
Table 1 The summarized effects of exposure to low, high
oxygen tension and during application of 100 μM
papaverine on arteriolar diameter (Mean ± SEM, *p < 0.05
vs. high oxygen and papaverine, †p < 0.05 vs. low oxygen
and papaverine, ‡p < 0.05 vs. low oxygen and high
oxygen, n = 28)

n = 28 Low oxygen High oxygen 100 μM
papaverine

Arteriolar diameter 32.9 ± 0.9 μm * 11.0 ± 0.4 μm † 37.5 ± 1.3 μm ‡

Oxygen tension 13.8 ± 1.3 mmHg 153.4 ± 3.4 mmHg 21.5 ± 1.9 mmHg
Figure 4A, during the control period a change from high
oxygen (PO2 = 143.5 ± 5.5 mmHg) to low oxygen tension
(PO2 = 10.8 ± 3.1 mmHg) caused vasodilation (ΔD= 24.9 ±
1.2 μm). Subsequent application of 1 μM cromakalim
inhibited the vasoconstriction during high oxygen ten-
sion. The additional application of 10 μM glibenclamide
caused reappearance of the vasoconstriction during
high oxygen tension (PO2 = 153.0 ± 7.1 mmHg), whereas
the dilation during low oxygen tension (PO2 = 7.7 ±
2.2 mmHg) was blunted. In a separate series of experi-
ments (See Figure 4B), 100 μM glibenclamide com-
pletely reversed the cromakalim-induced vasodilation.
In both series of experiments the vessels regained full
responsiveness to changes in oxygen tension following
wash-out of the drugs.

Role of 20-HETE
Figure 5 shows the effect of application of DDMS, an in-
hibitor of 20-HETE production, on vasomotor responses
during low and high oxygen tensions (n = 5). During the
control period, change from high oxygen (PO2 = 179.5 ±
6.5 mmHg) to low oxygen tension (PO2 = 10.3 ± 3.1 mmHg)
dilated the arterioles (ΔD= 19.8 ± 1.5 μm). Application of
Figure 2 Effects of DMSO were evaluated. During the control,
high oxygen tension constricted the arterioles, whereas low oxygen
tension dilated them. Vessels responded equally in the presence or
absence of 0.3% DMSO. There were no statistically significant
difference in arteriolar diameter between the control and 0.3%
DMSO during low oxygen tension (p = 0.709) and during high
oxygen tension (p = 0.188).



Figure 3 Effects of consecutive application of 5 μM glibenclamide, 1 μM and 5 μM cromakalim on arteriolar responses during high
and low oxygen were evaluated. (*p < 0.05 vs. high oxygen, †p < 0.05 vs. 5 μM glib and 5 μM glib + 1 μM crom during low oxygen,
‡p < 0.05 vs. papaverine, n = 5).

Figure 4 Effects of consecutive application of 1 μM cromakalim and increasing concentrations of glibenclamide. A. Effects of
consecutive application of 1 μM cromakalim and 10 μM glibenclamide on arteriolar responses during high and low oxygen tensions were
evaluated (*p < 0.05 vs. high oxygen, †p < 0.05 vs. control, 1 μM crom and wash-out during low oxygen, ‡p < 0.05 vs. papaverine, n = 5). B. Effects
of consecutive application of 1 μM cromakalim and 100 μM glibenclamide on arteriolar responses during high and low oxygen tensions were
evaluated (*p < 0.05 vs. high oxygen, †p < 0.05 vs. control, 1 μM crom and wash-out during low oxygen, ‡p < 0.05 vs. papaverine, n = 5).
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Figure 5 Effects of 10 μM DDMS on the arteriolar responses during high and low oxygen tensions were evaluated (*p < 0.05 vs. high
oxygen, †p < 0.05 vs. control high oxygen and wash-out high oxygen, ‡p < 0.05 vs. papaverine, n = 5).
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10 μM DDMS significantly inhibited vasoconstriction dur-
ing high oxygen (PO2 = 174.2 ± 3.3 mmHg) (p < 0.05, n = 5),
but did not have any effect on arteriolar diameter during
low oxygen tension (PO2 = 8.1 ± 2.8 mmHg). After wash-
out, vasomotor responses to changes in oxygen tension
were similar to control. Application of 100 μM papaverine
yielded the maximal vessel diameter 39.4 ± 1.6 μm.
Role of L-type Ca2+ channels
Both KATP channels and 20-HETE [4,11] cause vaso-
motor responses through changes in VSMC membrane
potential and voltage-dependent L-type Ca2+ channels
are therefore a central part of their signaling pathways.
Figure 6 Effects of cumulative stepwise application of 3 μM and 30 μ
high oxygen, †p < 0.05 vs. control and washout during high oxygen,
Moreover, L-type Ca2+ channels have been proposed to
be sensitive to changes in the oxygen tension [9,10].
Figure 6 shows the effects of blockade of the L-type

Ca2+ channels by increasing concentrations of nifedipine
(3 and 30 μM) on vasomotor responses of the arterioles
during both low and high oxygen tensions (n = 5).
During the control period, change from high (PO2 =
167.1 ± 4.3 mmHg) to low oxygen tension (PO2 = 14.2 ±
3.3 mmHg) caused vasodilation (ΔD = 19.4 ± 1.0 μm).
Application of 3 μM nifedipine completely abolished the
vasomotor response following the change from high
(PO2 = 159.7 ± 4.6 mmHg) to low oxygen tension (PO2 =
14.8 ± 1.9 mmHg) in the superfusate. However, the ves-
sels retained a statistically significant basal tone at both
M nifedipine on arteriolar responses were evaluated (*p < 0.05 vs.
‡p < 0.05 vs. papaverine, n = 5).
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low and high oxygen tension. Increasing the
concentration of nifedipine to 30 μM abolished basal tone,
and a change from high oxygen (PO2 = 148.9 ± 3.4 mmHg)
to low oxygen tension (PO2 = 9.3 ± 2.4 mmHg) did not
cause any significant vasodilation (p = 0.11, n = 5). There
were no statistically significant differences between the ves-
sel diameters at high or low oxygen tension at 3 vs. 30 μM
nifedipine. Finally, application of 100 μM papaverine
yielded a maximal vessel diameter of 31.7 ± 1.0 μm.

Role of prostaglandins and NO-synthase
Prostaglandins and NO are the two major endothelium-
derived vasodilators. Figure 7 shows the effects on vaso-
motor responses of inhibition of both prostaglandin and
NO synthesis, by applying indomethacin followed by
L-NAME during both low and high oxygen tensions
(n = 5). During the control period, change from high
(PO2 = 148.4 ± 9.9 mmHg) to low oxygen tension
(PO2 = 11.8 ± 5.0 mmHg) caused vasodilation (ΔD =
23.0 ± 1.3 μm). Application of 28 μM indomethacin, a
concentration previously shown to effectively block prosta-
glandin synthesis in hamster cremaster muscle arterioles
in vivo [16,17], acutely (< 30 sec) inhibited vasodilation dur-
ing low oxygen tension (PO2 = 5.9 ± 4.1 mmHg). However,
after a period of ~2-3 minutes (steady state) with presence
of indomethacin, the vessel regained its responsiveness to
low oxygen by dilating again. Additional application of
100 μM L-NAME did not affect vasomotor responses to
changes in oxygen tensions.

Discussion
According to a prominent hypothesis for the mechanism
of oxygen sensing in the microcirculation, low oxygen
tension opens KATP channels in VSMCs due, at least in
part, to an increase in the ADP/ATP concentration ratio.
Figure 7 Effects of consecutive application of 28 μM indomethacin an
oxygen were evaluated (*p < 0.05 vs. high oxygen, †p < 0.05 vs. contr
‡p < 0.05 vs. papaverine, n = 5).
This leads to efflux of K+ and hyperpolarization of the
cell, which in turn inhibits the influx of Ca2+ through the
voltage-gated L-type Ca2+ channels leading to smooth
muscle relaxation and eventually vasodilation [3,18,19]. In
apparent agreement with this notion the present study
shows that hypoxic vasodilation was completely inhibited
by glibenclamide, and the reactivity could be restored grad-
ually by increasing concentrations of the KATP channel acti-
vator cromakalim (1 μM and 5 μM cromakalim). Likewise
cromakalim alone caused maximal vasodilation and a
complete loss of hyperoxic vasoconstriction, which was
gradually restored by application of 10 μM and 100 μM
glibenclamide.
Importantly, however, studies by Jackson have provided

evidence against the direct involvement of KATP channels
in hypoxic vasodilation [9]. Jackson showed that low oxy-
gen tension, in a glibenclamide sensitive manner, inhibited
norepinephrine-induced contraction in VSMCs from ham-
ster cremaster muscle arterioles. However, the effect of low
oxygen tension was neither associated with a change of the
whole-cell conductance nor of the membrane potential of
the VSMCs [9], which clearly argues against the opening of
K+ channels. Instead it was suggested that the reported ef-
fect of glibenclamide was unspecific, possibly related to a
drug-induced membrane depolarization [9].
The results of the present study are therefore difficult

to reconcile with a direct role for KATP channels in oxy-
gen sensing in cremaster muscle arterioles. The most
likely explanation of the present results appears to be
that the effects of glibenclamide and cromakalim, both
when applied alone and in combination, are mediated
indirectly through changes in the membrane potential.
In cremaster muscle VSMCs glibenclamide applied alone
closes KATP channels, and depolarizes the cell membrane
[9]. This will activate the L-type Ca2+ channels, and
d 100 μM L-NAME on arteriolar response during high and low
ol and 28 μm indo (steady state) during low oxygen,
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constrict the vessels. We hypothesize that if the mem-
brane depolarization is pronounced, the activation of the
L-type channels will be sufficient, even in the presence
of hypoxia, to elicit maximal vasoconstriction. The
addition of cromakalim antagonizes the effect of
glibenclamide and the membrane potential will gradually
become more negative as the KATP channels are
reactivated [9]. This will partially deactivate the L-type
Ca2+ channels due to the steep voltage-dependence of
their gating behavior in the physiological range of mem-
brane potentials (–60 to –30 mV), and eventually render
them responsive towards the effects of hypoxia. When
cromakalim is added alone to maximally activate the
KATP channels, the membrane will be hyperpolarized
and the L-type Ca2+ channels closed. The vessel will
therefore be close to maximally dilated, and once more
irresponsive to changes in oxygen levels.
These apparently competitive actions of glibenclamide

and cromakalim on the KATP channels are in line with
previous ex vivo as well as in vivo observations. In
isolated porcine coronary artery, the concentration-
response curve of glibenclamide was right-shifted in the
presence of cromakalim demonstrating a competitive ac-
tion of these drugs on KATP channels [20]. In an elabor-
ate in vivo study in rats, Gardiner et al showed that the
hindquarter skeletal muscle blood flow was increased
significantly by levcromakalim, and that this was revers-
ibly antagonized by glibenclamide, demonstrating that
glibenclamide and a cromakalim analogue have revers-
ible and competitive actions on local blood flow in rat
skeletal muscle in vivo. Similar effects were obtained in
the mesenteric and renal circulations [21]. However, in
an early pharmacological study glibenclamide (IC50 148
nM) was able to block cromakalim (0.5 μM) induced re-
laxation of isolated rabbit superior mesenteric artery
[22]. As we have used much higher concentrations of
these drugs due to the fact that it was an in vivo study,
we speculate that only at sufficiently high concentrations
are cromakalim able to compete with the actions of
glibenclamide on KATP channels. We find it unlikely that
the observed effects represent unspecific effects due to
the high concentrations of the respective drugs. How-
ever, we cannot rule out this possibility, and it is clearly
a limitation of the present in vivo study.
The results of the glibenclamide/cromakalim experi-

ments show that oxygen sensing depends critically on
the level of the membrane potential, and this suggest
that voltage gated L-type Ca2+ channels could play a
central role in the mechanism. As is apparent from
Figure 6, this was indeed the case. In the presence of
medium (3 μM) to high (30 μM) concentrations of
nifedipine, there was no significant difference in vessel
diameter between high and low oxygen tension. The fail-
ure to dilate in response to hypoxia was not due to a
complete loss of vessel tone as indicated by the fact that
even in the presence of 3 μM nifedipine, the vessels were
still able to dilate further when papaverine was added to
the superfusate. L-type Ca2+ channels are only one of
several Ca2+ entry mechanisms in VSMCs, and it is
therefore not surprising that the vessels are able to re-
tain tone despite the presence of nifedipine. This sug-
gests that the failure to dilate in response to hypoxia was
not due to a complete loss of vessel tone, but rather due
to the inhibition of the L-type Ca2+ channels. When
given at a high concentration (30 μM) nifedipine had a
more pronounced effect on vascular tone, and this effect
was irreversible within the time limit of the washout
period. The fact that changes in Ca2+ influx through the
L-type channels appears to be involved in oxygen sens-
ing does not indicate that the change in influx is medi-
ated by changes in the membrane potential. Previous
studies have suggested that hypoxia could induce vaso-
dilation by acting directly on the voltage operated L-type
Ca2+ channels, reducing Ca2+ influx [9,10]. Our findings
therefore show that L-type Ca2+ channels are central for
the oxygen sensing mechanism, but they do not allow us
to discriminate between a direct action of oxygen on
the channels, and an indirect effect mediated through
changes in membrane potential.
20-HETE has been proposed to be involved in oxygen

sensing by acting as a vasoconstrictor. It is produced in
the VSMCs by the CYP450-4A enzyme system with ara-
chidonic acid as a substrate. In the presence of oxygen,
CYP450-4A oxidizes arachidonic acid to 20-HETE. The
Km for oxygen is approximately 55 μM at 37°C [12]. This
value corresponds to an oxygen tension of around
40 mmHg, which is above the normal values in skeletal
muscle [2,23-25]. The synthesis of 20-HETE is therefore
partially limited by the availability of oxygen, and an
increased oxygen tension will lead to an increased pro-
duction rate for 20-HETE. 20-HETE inhibits large-
conductance Ca2+-activated K+ channels (BKCa channels)
located in the plasma membrane of VSMCs, which leads
to depolarization of the cell. This in turn activates voltage-
dependent L-type Ca2+ channels, increasing influx of Ca2+

and causing contraction of the VSMCs and eventually vaso-
constriction [11,12,14]. Evidence supporting this includes a
patch clamp study on cat cerebral microvessel VSMCs [11]
and an intravital microscopy study of rat cremaster muscle
arterioles, showing inhibition of hyperoxic vasoconstriction
by 17-octadecynoic acid (17-ODYA), an inhibitor of
CYP450-4A [12]. In our preparation, inhibition of 20-
HETE production using 10 μM DDMS inhibited vasocon-
striction to high oxygen tension in a reversible manner, but
did not affect vasodilation to low oxygen tension (Figure 5).
Previous studies have shown that vessels maintain their
reactivity to vasoconstrictors (norepinephrine) following
addition of DDMS [26], and in the present study the vessels
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maintained some tone after addition of DDMS. It is there-
fore unlikely that the lack of response to high oxygen
reflects a general failure of the VSMC to contract. The
results show that 20-HETE plays a role in vasoconstriction
to high oxygen tension in mouse cremaster muscle arteri-
oles, but has no role in hypoxic vasodilation. Since 20-
HETE acts as a vasoconstrictor through inhibition of BKCa

channels and/or stimulation of TRPC6 channels [27,28], it
is interesting that specific activation of the KATP channels
using cromakalim was able to abolish hyperoxic vasocon-
striction (Figure 4A & B). This further strengthens the
notion that the effect on oxygen sensing of blocking the
KATP channels is indirect. When the KATP channels are
activated by addition of cromakalim the membrane hyper-
polarizes, and we expect that inhibition of the BKCa

channels by 20-HETE will not be able to depolarize the
membrane sufficiently to elicit vasoconstriction.
Vasodilator prostaglandins PGE2 and PGI2 (prostacyc-

lin) and NO released from the vascular endothelium play
important roles in regulating vascular tone in the micro-
circulation [29-33]. Release of prostaglandins and NO
has been proposed to occur during low oxygen tension,
and these substances could contribute to oxygen sensing
[34-38]. Evidence of prostaglandins as effectors of
hypoxic vasodilation comes from in vitro studies on
isolated arterioles, where inhibition of cyclooxygenase
using indomethacin inhibited hypoxic vasodilation
[37,38]. Moreover, skeletal muscle contraction-induced
vasodilation in hamster cremaster muscle arterioles
paired with venules was blocked by indomethacin
in vivo [16].
In our study, inhibition of prostaglandin synthesis by

application of 28 μM indomethacin (Figure 7), acutely
inhibited vasodilation during low oxygen, but after ~2-
3 minutes (steady state) the arterioles had regained their
responsiveness, and dilated to low oxygen with a re-
sponse comparable to the control. The transient reduc-
tion in the vessel diameter was probably due to a sudden
disruption of a constitutive release of vasodilator prosta-
glandins causing a transient vasoconstriction. Alterna-
tively, the rate of vasodilation to hypoxia could be
severely slowed by the acute lack of prostaglandins.
However the vessels quickly regained their responsive-
ness to low oxygen tension, indicating that prostaglan-
dins are not involved in the steady state mechanism of
hypoxic vasodilation. In a previous in vivo study, indo-
methacin inhibited contraction-induced dilation of 3rd
order arterioles paired to venules in the hamster cremas-
ter muscle, but had no effect on unpaired 3rd order arte-
rioles. It was therefore suggested that prostaglandins,
released from the venules and diffusing to the arterioles,
participate in the vasodilator response during muscular
contraction [16]. In our study, only unpaired 3rd order
arterioles were examined, and in good agreement with
the findings of Hammer et al., we did not find evidence
for the involvement of prostaglandins in unpaired arteri-
oles in hypoxic vasodilation.
In the present study we tested whether NO was re-

leased during low oxygen tension by additional applica-
tion of 100 μM L-NAME, a concentration which we
formerly have shown to effectively abolish bradykinin-
induced vasodilation in the mouse cremaster muscle
microcirculation in situ [6]. In the presence of indo-
methacin and L-NAME the vessels responded with vaso-
dilation and constriction to low and high oxygen tension
as during the control, indicating that NO is not involved
in hypoxic vasodilation in mouse cremaster muscle arte-
rioles. This is in good agreement with recent studies
from our laboratory, where application of L-NAME did
not affect vasomotor responses to low or high oxygen
tension [6,39].
The exteriorized cremaster muscle preparation is a

well-established in vivo model for studying the microcir-
culation of skeletal muscles. Several studies have investi-
gated the effect of tissue oxygen tension perturbations
on vascular responses caused by superfusion of the cre-
master muscle with physiological salt solutions equili-
brated with gas mixtures with different % O2, balanced
with N2 and 5% CO2 [40-42]. When the oxygen levels
are low the superfusate acts as an “oxygen-sink”, and the
tissue oxygen tension is reduced. Conversely, the tissue
oxygen tension is increased by elevating the PO2 of the
superfusate, which now behaves as an “oxygen-source”
[43,44]. We recently showed that, when the oxygen mi-
crosensor tip was placed below the cremaster muscle, a
decrease or increase in oxygen tension could be mea-
sured that mirrored changes in the superfusate oxygen
tension above the tissue [39]. This provides an efficient
method for studying the influence of tissue oxygen
tensions in the microcirculation of a living animal, and
allows changing the oxygen tension locally in the cre-
master muscle independently of the oxygen supplied by
the vessels. The preparation, on the other hand, does
not allow us to determine whether the responses are
mediated by oxygen acting directly on the proteins in
question, or whether the changes in oxygen levels exert
their effect through changes in the production of various
metabolites. Nor is it possible to determine the specific
cellular location of the signaling pathways, i.e. if they are
strictly intravascular or whether they involve the paren-
chymal cells as well.

Conclusions
In conclusion, this in vivo study supports the notion that
KATP channels are permissive for the response to oxygen
by controlling the membrane potential in cremaster
muscle VSMCs, whereas the activity of L-type Ca2+

channels are central to the oxygen sensing mechanism. As
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an additional mechanism, 20-HETE mediates hyperoxic
vasoconstriction. Our conclusions are highlighted by the
fact that blockade of L-type Ca2+ channels, which constitute
a common pathway for the two mechanisms, inhibited both
vasodilation and constriction to low and high oxygen ten-
sions, respectively. In contrast, the lack of effects of
inhibiting two major endothelial-derived vasodilator metab-
olites, prostaglandins and NO, suggests that these pathways
are not involved in hypoxic vasodilation in mouse cremas-
ter muscle arterioles in vivo.
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