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Abstract
Background:  Dopamine was shown to stimulate the perivitelline fluid secretion by the albumen
gland. Even though the albumen gland has been shown to contain catecholaminergic fibers and its
innervation has been studied, the type of catecholamines, distribution of fibers and the precise
source of this neural innervation has not yet been deduced. This study was designed to address
these issues and examine the correlation between dopamine concentration and the sexual status
of snails.

Results:  Dopaminergic neurons were found in all ganglia except the pleural and right parietal, and
their axons in all ganglia and major nerves of the brain. In the albumen gland dopaminergic axons
formed a nerve tract in the central region, and a uniform net in other areas. Neuronal cell bodies
were present in the vicinity of the axons. Dopamine was a major catecholamine in the brain and
the albumen gland. No significant difference in dopamine quantity was found when the brain and
the albumen gland of randomly mating, virgin and first time mated snails were compared.

Conclusions:  Our results represent the first detailed studies regarding the catecholamine
innervation and quantitation of neurotransmitters in the albumen gland. In this study we localized
catecholaminergic neurons and axons in the albumen gland and the brain, identified these neurons
and axons as dopaminergic, reported monoamines present in the albumen gland and the brain, and
compared the dopamine content in the brain and the albumen gland of randomly mating, virgin and
first time mated snails.

Background
Dopamine is commonly found in the molluscan central

nervous system (CNS). In some gastropods, dopamine

has been implicated in the regulation of many physiolog-

ical activities such as feeding in Helisoma trivolvis[1,2],

Limax maximus[3], Aplysia[4,5] and Lymnaea stagna-

lis[6], respiration in L. stagnalis[7,8], gill movement in

Aplysia californica[9,10], and egg laying behaviour in L.

stagnalis[11]. Saleuddin et al. [12] have shown that

dopamine stimulates protein secretion from Helisoma

duryi albumen gland.

The albumen gland in pulmonate snails is an accessory

gland of the female reproductive tract (Fig 1). It synthe-
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sizes and secretes perivitelline fluid (PVF), which is com-

posed mainly of proteins and polysaccharides [13].

Mature oocytes are released by the ovotestis and travel

via the hermaphroditic duct into the carrefour, where the

albumen gland duct empties. In the carrefour the eggs

are fertilized and then are coated with the PVF. The im-

portance of the PVF lies in the fact that it is a major nu-

trients source for the developing embryo since the

oocytes themselves contain very little vitellogenic pro-

tein. [14,15]. The secretion of the PVF and the arrival of

oocytes at the carrefour must be synchronized, suggest-

ing a precise control of the PVF release [16]. de Jong-

Brink and Goldschmeding [17] identified a neuronal

plexus in the duct of the albumen gland and the carre-

four, which suggested that a nervous mechanism may be
involved in the control of the PVF release. Furthermore,

catecholamine-containing axons were identified in the

albumen gland, carrefour and some other reproductive

organs of L. stagnalis and other species of pulmonate

snails [18,19]. It was also shown that the PVF secretion

by the albumen gland could be stimulated by forskolin,

cAMP, brain extract [16] and dopamine [12].

Dopaminergic neurons have been localized in the CNS of

some snails such as L. stagnalis[20–23], Helix poma-

tia[24,25], Aplysia californica[5,26] and Planorbis cor-

neus[27], and they were mapped in the buccal ganglia of

Helisoma trivolvis[2,28] but not other ganglia. In H. tri-

volvis, Trimble et al. [28] showed that 3H-dopamine ac-

cumulates specifically in the buccal, cerebral, pedal, left

parietal and visceral ganglia, and the left pedal ganglion

contains a greater amount of dopamine than the right.

Furthermore, using glyoxylic acid Harris and Cottrell

[29] and Syed et al. [30] identified a giant dopaminergic

neuron in the left pedal ganglion in the CNS of H. tri-

volvis.

The purpose of our study was to establish possible sourc-

es of dopamine that may be regulating the secretion of

the PVF from the albumen gland. Although Brisson and
Collin [18] showed the presence of catecholamine-con-

taining neurons in the albumen gland and carrefour they

neither specified the type of catecholamines nor their

distribution within the albumen gland and the carrefour.

Furthermore, since the albumen gland is known to be in-
nervated by the CNS [17] and the localization of

dopaminergic neurons in the CNS of Helisoma has not

been studied, we focused on these investigations. In this

study we describe distribution of catecholaminergic neu-

rons and their axons in the H. duryi CNS and albumen

gland utilizing well accepted methods that employ anti-

tyrosine hydroxylase (TH) IgG and glyoxylic acid [3,20–

22,24,25,31,32]. Tyrosine hydroxylase is an enzyme in

the pathway of catecholamine synthesis; it converts tyro-

sine into DOPA and can be used to localize neurons pro-

ducing catecholamines. The application of glyoxylic acid

converts dopamine and other catecholamines into in-

tensely fluorescent 2-carboxymethyl-dihydroisoquino-

line derivatives [33].

Using high performance liquid chromatography with

electrochemical detection (HPLC-ED) we report

monoamines present in the albumen gland and the CNS,

identify catecholaminergic neurons found in the albu-

men gland and CNS as dopaminergic, report the amount

of dopamine present in these organs in randomly mating

snails and compare it to that of virgin and first time mat-

ed snails to determine whether the PVF secretion caused

any changes in the amount of dopamine present in these

organs. We compared dopamine quantity in snails of dif-
ferent sexual status because research in this lab identi-

fied differences between virgin and randomly mating

snails, such as differences in egg mass production and

synthetic activity of the albumen gland [34]. Further-

more, known centers involved in regulating reproduc-

tion (endocrine dorsal bodies and neurosecretory

caudodorsal cells) also show changes after mating

[35,36]. Following from the above data we formulated a

hypothesis: after mating eggs are fertilized and coated

with the PVF and since dopamine stimulates the PVF re-

lease it might be spent in animals that have mated and

formed an egg mass. If this hypothesis is true a difference

in dopamine quantity in the albumen gland would be ob-

served between virgin and first time mated animals. Fur-

thermore, since the albumen gland is innervated by the

CNS, dopamine is either synthesized centrally in neuro-

nal cell bodies in the CNS and then transported along ax-

ons to the albumen gland or locally in axons in the

albumen gland. Our experiments were designed to test

which mechanism is valid. If first time mated animals

have lower levels of dopamine in the CNS the first mech-

anism applies. Randomly mating animals were treated

as control.

Figure 1
A diagram of the reproductive system of H. duryi
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Results
In H. duryi both the albumen gland (Figs. 2a,2b,2c,

3a,3b,3c) and the CNS (Figs. 4a,4b,4c, 5a,5b,5c,

6a,6b,6c, 7a,7b) contained dopaminergic neurons and

fibers. In the CNS their number, size and location are re-

corded in Table 1. Unless otherwise stated, the mapping

illustrates neurons that were found deep in the ganglia.

Since HPLC analysis revealed that dopamine is the only

catecholamine present in the albumen gland and there is

very little norepinephrine in the brain compared with

dopamine, the structures that were positive when probed

Figure 2
Confocal images of the anti-TH IgG treated tissues. TH-IR
neurons are indicated with arrowheads.a: a part of the albu-
men gland (AG) with attached carrefour (cf). Lumen (In) is
clearly visible within the carrefour. TH-IR nerve endings form
a tract (arrow) that originates in the carrefour. TH-IR neuro-
nal cell bodies are seen within the tract b: a part of the albu-
men gland with attached carrefour. Closely packed together
TH-IR cell bodies form walls of the carrefour. c: a part of the
albumen gland with TH-IR axons forming the nerve tract
with TH-IR neuronal cell bodies visible within the tract. Scale
bar = 100 µm.

Figure 3
Fluorescence micrograph of glyoxylic acid treated tissues. a:
the albumen gland. Dopaminergic nerve endings form a tract.
Neuronal cell bodies are seen within the tract (arrowhead).
b: the albumen gland. Dopaminergic nerve endings form vari-
cosities (arrowheads). c: a part of the albumen gland (AG)
with attached carrefour (cf). Dopaminergic nerve endings
form a tract (arrowhead) that originates in the carrefour.
Scale bar = 100 µm.
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with glyoxylic acid and anti-TH IgG are presumed to con-

tain dopamine.

The fixation preserved the tissues probed with antibod-
ies well. Distribution of dopaminergic neurons in H. du-

ryi CNS is diagrammed in Figures 8 and 9, based on

examination of 30 brains stained with glyoxylic acid and

20 brains probed with anti-TH IgG. Although some var-

iation was found in brains stained with glyoxylic acid in

the number and position of neurons, the distribution of

neurons was consistent in brains probed with anti-TH

IgG. The TH-immunolabeling was intense and contrast-

ed well with the clear background causing neuronal cell

bodies and axons to appear well defined. Neurons

stained with glyoxylic acid were of intense fluorescence

and generally contrasted well with background except

for neurons in the cerebral ganglia where the presence of

blue-green fluorescing axons found in the nerves leaving

the cerebral ganglia interfered with the identification of

the dopaminergic neurons (Fig. 6c). Blue-green fluoresc-

ing axons in the brain were of low contrast and staining

intensity. The buccal ganglia were stained with glyoxylic

acid only.

The distribution of dopaminergic fibers in H. duryi albu-

men gland is diagrammed in Figure 10, based on exami-

nation of 20 albumen glands stained with glyoxylic acid

and 15 albumen glands probed with anti-TH IgG. The

blue-green fluorescence was intense and contrasted well
with the clear background whereas the intensity of TH-

immunoreactivity was weaker. The number of TH-im-

munoreactive (TH-IR) neurons and axons found in the

albumen gland was less compared to the number of blue-

green fluorescing neurons and axons.

Mapping of tyrosine hydroxylase-immunoreactive neurons 
and comparison with glyoxylic acid-induced blue-green 
fluorescence
Buccal ganglia
Altogether 48–54 blue-green fluorescent neurons on the

dorsal side (Fig. 7a) and 32–36 on the ventral side were

observed (Figs. 7b). All the neurons occurred in bilater-

ally symmetrical groups. A single 15 µm diameter neuron

was found off the center towards the buccal commissure

and could be seen from both ventral and dorsal surfaces.

Its location suggests its similarity to the B20 neuron in

Aplysia, which is involved in feeding behaviour [4]. Oth-

er neurons were smaller (5–10 µm). On the dorsal sur-

face a single neuron was located near the posterior

buccal nerve and another single neuron was at the root of

the ventral buccal nerve. The location of the latter neu-

ron suggests that it is the same neuron as the N1a neuron

in H. trivolvis[2], and the B65 neuron in Aplysia califor-

nica[5], which evoke the buccal motor program. Other
neurons on both dorsal and ventral surfaces were located

Figure 4
Confocal images of the anti-TH IgG treated CNS. TH-IR neu-
rons are indicated with arrowheads. a: the CNS without cer-
ebral ganglia. The giant dopaminergic neuron (LPeD1) is in
the left pedal ganglion. TH-IR axons are visible in the ganglia
and some nerves. A thick LPeD1 axon is well defined. It
passes through the left pleuro-pedal and pleuro-parietal con-
nectives giving off branches and leaving the left parietal gan-
glion in left parietal nerve (1 pm). b: the CNS with a part of
the cerebral ganglia A TH-IR neuron is present in the left
parietal ganglion. TH-IR axons are clearly visible in the ganglia
and some nerves. c: the CNS without cerebral ganglia. The
giant dopaminergic neuron (LPeD1) is in the left pedal gan-
glion. TH-IR axons are clearly visible in the ganglia and some
nerves. A symmetrical group of three TH-IR neurons is
clearly visible in the right pedal ganglion. A single TH-IR neu-
ron is present in the visceral ganglion. The structures shown
are CG-cerebral ganglia, Pd-pedal ganglia (L-left, R-right), Pl-
pleural ganglia (L-left, R-right), Pr-parietal ganglia (L-left, R-
right), V-visceral ganglion, cc-cerebral connective, cpc-cere-
bropedal connective, in-intestinal nerve, pn – pedal nerve.
Scale bar = 100 µm.
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Figure 5
Confocal images of the anti-TH IgG treated CNS. TH-IR neu-
rons are indicated with arrowheads. a, b and c are a series of
confocal sections through the cerebral ganglia with a being
the first section close to the dorsal surface of the ganglia and
c being close to the ventral surface. TH-IR axons run
through the cerebral commissure (cc) and exit the cerebral
ganglia in tentacular (tn), median lip (mm) penis (pen) and
frontolateral (fn) nerves. TH-IR neurons are located in the
vicinity of axons. Neither TH-IR cells nor axons were found
in dorsal bodies (DB). Scale bar = 100 µm.

Figure 6
Fluorescence micrograph of glyoxylic acid treated tissues.
Blue fluorescing cells are indicated with arrowheads. a: The
left parietal (LPr) and visceral (V) ganglia. A single blue-green
fluorescing neuron is visible in the visceral ganglion. Blue fluo-
rescing fibers are visible in the intestinal (in) and left parietal
(lprn) nerves, viscero-parietal and pleuroparietal connectives.
b: the pedal ganglia. The LPeD1 is clearly visible in the left
pedal ganglion. Groups of small dopaminergic neurons are
located on the periphery. Blue fluorescing fibers are visible in
the pedal nerves (pn) and cerebro-pedal connectives (cpc). c:
the cerebral ganglia. Cerebral commissure (cc), cpc, median
lip (mm), frontolateral (fn) and tentacular (tn) nerves contain
blue fluorescing fibers. The structures shown are Pd-pedal
ganglia (L-left, R-right), Pl-pleural ganglia (L-left, R-right), Pr-
parietal ganglia (L-left, R-right). Scale bar = 100 µm.
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in groups composed of three to seven neurons (Fig.

7a,7b). The buccal commissure, cerebro-buccal connec-

tive, heterobuccal nerve, ventral buccal nerve, posterior

buccal nerve and esophageal trunks contained blue-
green fibers (Fig. 7a,7b). The number of fibers was high

in all nerves except the posterior buccal nerve, which

contained only a few axons. The buccal ganglia were

stained with glyoxylic acid only due to the difficulty of

manipulating them for the antiserum treatment.

Figure 7
Fluorescence micrograph of glyoxylic acid treated buccal gan-
glia. a: dorsal surface b: ventral surface. The structures
shown are B20 – neuron that is similar to B20 neuron in Aply-
sia[4], CBC – cerebro-buccal connective, ET – esophageal
trunks, HBN-heterobuccal nerve, N1a – neuron that is
involved in the control of feeding in Helisoma[2], PBN – pos-
terior buccal nerve, VBN – ventral buccal nerve. Scale bar =
100 µm.

Figure 8
The distribution of dopaminergic neurons and axons in the
CNS of H. duryi. Filled circles indicate neurons that showed
green fluorescence after glyoxylic acid treatment but were
not immunostained after anti-TH IgG treatment. Gray circles
were both green fluorescent after glyoxylic acid treatment
and TH-IR. The axons shown are those probed with anti-TH
IgG. a: dorsal surface, b: ventral surface. Anterior is up. The
structures shown are BG-buccal ganglia, CG-cerebral ganglia
(L-left, R-right), DB-dorsal bodies, Pd-pedal ganglia (L-left, R-
right), Pl-pleural ganglia (L-left, R-right), Pr-parietal ganglia (L-
left, R-right), V-visceral ganglion. ao – aorta, an – anal nerve,
fn – frontolateral nerve, in – intestinal nerve, lprn – left pari-
etal nerve, mln – median lip nerve, pen – penis nerve, rprn –
right parietal nerve, tn – tentacular nerve.
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Table 1: Comparison of the distribution and size of tyrosine hydroxylase immunolabeled and glyoxylic acid- induced green fluorescent 
neurons in ganglia of the H. duryi CNS.

Ganglia Tyrosine hydroxylase-imniunoreactive Green fluorescing

Size (µm) Number(Left+Right) Size (µm) Number min-max 
(Left+Right)

Buccal Not treated with anti-TH IgG 5–15 4
15–25 76–86

Cerebral 25–50 16 25–50 24–28
Pedal - - 5–15 10–12

15–25 6 15–25 6
75+ 1 75+ 1

Parietal-pleura 1–25–50 2 25–50 2
visceral gangli a

Total 15–75+ 25 5–75+ 123–139
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Cerebral ganglia contained symmetrically distributed

neurons, 20–30 µm in diameter. Anti-tyrosine hydroxy-

lase antiserum revealed 16 TH-IR neurons in both left

and right ganglia (Fig. 5a,5b,5c). They made up three
groups: a pair of neurons was located at the root of the

tentacular nerve, another pair was located at the root of

the frontolateral nerve (these neurons were located close

to the dorsal surface of the ganglia), and a group of 4 neu-

rons was located in the center of the ganglia. The number

of blue-green fluorescing neurons varied from 24 to 28.

They were distributed in similar manner as TH-IR neu-

rons (Fig. 6c). The cerebral commissure contained a

great number of TH-IR fibers that passed through the

length of the ganglia and exited in the frontolateral, me-

dian lip, penis and tentacular nerves (Figs. 5a,5b,5c). All

the neurons were located in the vicinity of the TH-IR fib-

ers. Glyoxylic acid revealed dopaminergic fibers in the fr-

ontolateral nerve, median lip nerve, tentacular nerve and

cerebral commissure but no fibers were observed within

the cerebral ganglia (Fig. 6c). Neither dopaminergic neu-

rons nor axons were found in the dorsal bodies.

Pedal ganglia
The left and right pedal ganglia contained a total of 7

dopaminergic neurons that were both TH-IR and blue

fluorescent (Figs. 4a,4b,4c, 6b). Six dopaminergic neu-

rons (10–20 µm in diameter) made up a bilaterally sym-

metrical group located near the roots of nerves leaving

the pedal ganglia. A single giant dopaminergic neuron
(LPeD1) was seen in the left pedal ganglion at the pleural

side of the ganglion located close to the pedal commis-

sure (Figs. 4a,4c, 6b). The pedal commissure contained a

few TH-IR fibers that passed through the length of each

ganglion and exited with the nerves leaving the pedal

ganglia. Neurons located in the bilaterally symmetrical

group were in the vicinity of the nerve fibers. A single

thick, intensely stained TH-IR LPeD1 axon passed

through the left pleuro-pedal and pleuro-parietal con-

nectives giving off branches and leaving the left parietal

ganglion in the left parietal nerve (Figs. 4a,4c). Several

TH-IR fibers exited the right pedal ganglion and passed

through the right pleuro-pedal, pleuro-parietal, and vis-

cero-parietal connectives giving off branches, and con-

necting with the fibers coming from the left parietal

ganglion before exiting via the anal and intestinal nerves.

The cerebro-pedal connective also contained TH-IR fib-

ers. In the glyoxylic acid treated brain an additional

group composed of 5 small (5–10 µm) neurons was locat-

ed near the pleuro-pedal connective (Fig. 6b). Glyoxylic

acid revealed dopaminergic fibers in the pedal commis-

sure, pleuro-pedal, cerebro-pedal connectives and the

nerves leaving the pedal ganglia (Fig. 6b).

Parietal-pleural-visceral ganglia complex
Although a great number of TH-IR fibers were found

throughout the parietal-pleural-visceral ganglia complex

(see above) no dopaminergic neurons were seen in either
right or left pleural ganglia or the right parietal ganglion

(Figs. 4a,4b,4c, 6a,6b). The left parietal ganglion con-

tained a single dopaminergic neuron 25–30 µm in diam-

eter located in the path of the TH-IR LPeD1 axon that

passed through the complex (Fig. 4b). The visceral gan-

glion contained a single similar size neuron, also located

on the path of dopaminergic fibers going through the

complex (Fig. 4c, 6a). With glyoxylic acid treatment no

fibers were found within the ganglia, only in the pleuro-

pedal, pleuro-parietal, viscero-parietal connectives, the

left and right parietal, anal and intestinal nerves.

Albumen gland
Dopaminergic nerve endings formed a uniform network

that was consistent across all parts of the gland except for

the central region, where the axons were parallel forming

a nerve tract (Figs. 2a, 2c, 3a,3b,3c). Neuronal cell bodies

were present in the vicinity of the tract. The albumen

glands of virgin and mated animals showed a similar dis-

tribution of dopaminergic neurons and fibers (not

shown). The origin of the nerve tract was traced to the

carrefour, which was positive when probed with glyoxyl-

ic acid and anti-TH IgG (Figs. 2a,2b, 3c). A great number

of dopaminergic cells that were closely packed together

made up the walls of the carrefour and dopaminergic ax-
ons made up the nerve tract that went into the albumen

gland.

HPLC
Among monoamines serotonin and dopamine were

present in great amounts whereas norepinephrine was

present in insignificant amounts in the CNS of H. duryi

(Fig. 11). In the albumen gland dopamine was the only

monoamine. The content of dopamine in the CNS and

the albumen gland of randomly mating, virgin and first

time mated snails is summarised in Figure 12. No signif-

icant difference was found when the concentrations of

dopamine in the CNS and the albumen gland were com-

pared between the three experimental groups (P>0.05).

Discussion
Our work reported here followed the studies of a number

of researchers [12,16–19]. We demonstrated the pres-

ence of the neuronal cell bodies and their axons in the H.

duryi albumen gland and identified them as dopaminer-

gic, described their distribution and possible origin. The

analysis of biogenic amines by HPLC demonstrated that

dopamine is a major catecholamine in the CNS and the

only monoamine in the albumen gland. We measured

the amount of dopamine in the albumen gland and the
CNS of randomly mating, virgin and first time mated an-
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imals. In addition, we mapped dopaminergic neurons in

the H. duryi CNS.

Comparison of the distribution of the dopaminergic neu-
rons in the CNS of Helisoma duryi to that in other gastro-
pods
The distribution of dopaminergic neurons and their ax-
ons in the CNS of H. duryi is illustrated in Figs. 8 and 9.

Since some norepinephrine was detected by HPLC it is

possible that some of the mapped neurons contain nore-

pinephrine and not dopamine. However, the amount of

norepinephrine detected by HPLC was small compared
with dopamine (Fig. 11), and its presence could not have

interfered with our data to any great extent. Our conclu-

sion coincides with that of other researchers who detect-

ed a significantly greater amount of dopamine compared

with norepinephrine in the CNS of some other gastro-

pods [3,24,28].

Dopaminergic neurons have been mapped in the brains

of other snails [5,20–27], and they were mapped in the

buccal ganglia of Helisoma trivolvis[2,28]. The map of

the dopaminergic neurons in the buccal ganglia done by

Quinlan et al. [2] is similar to the map obtained in this

experiment except for a few additional neurons found in

the present study. The locations of some of the neurons

identified in the buccal ganglia suggest their similarity to

B20, N1a and B65, well studied neurons in other snails

[2,5]. Trimble et al. [28] showed that 3H-dopamine accu-

mulates only in the buccal, cerebral, pedal, left parietal

and visceral ganglia of the H. trivolvis brain. Their re-

sults were consistent with the findings in our study:

dopaminergic cells were found only in the buccal, cere-

bral, pedal, left parietal and visceral ganglia. The left

pedal ganglion contained the LPeD1 neuron, which ex-

plains why Trimble, et al. [28] found the amount of

dopamine in the left pedal ganglion to be greater than in
the right pedal ganglion, and confirms findings of other

researchers, who identified a giant neuron in the left

pedal ganglion of H. trivolvis[29,30].

Neither dopaminergic neurons nor their fibers were

found in the dorsal bodies even though the dorsal bodies

are located in close proximity to the cerebral ganglia and

were shown to be involved in the regulation of the albu-

men gland activity [37,38]. These findings are contrary

to the findings of Elekes et. al. [22] who observed small

dopaminergic cells and Werkman et. al. [23] who found

dopaminergic axons within the dorsal bodies of L. stag-

nalis.

The number of dopaminergic neurons in the CNS of L.

stagnalis and Helix pomatia was much greater than that

found in H. duryi; however, the majority of neurons

were located in the same ganglia. Distribution of

dopaminergic neurons in the CNS of H. duryi that we

mapped was almost identical to that of Planorbis cor-

neus in the number of neurons, their size and position in

the ganglia. The giant dopamine cell was found in the

right pedal ganglion in L. stagnalis (but not in Helix

pomatia or Aplysia californica) whereas in H. duryi and

Planorbis corneus it was found in the left pedal ganglion.
This difference was described in detail by other research-

Figure 9
The distribution of dopaminergic neurons and axons in the
buccal ganglia of H. duryi. a: dorsal surface, b: ventral surface.
B20 – neuron that is similar to B20 neuron in Aplysia,[4],
CBC – cerebro-buccal connective, ET – esophageal trunks,
HBN-heterobuccal nerve, N1a – neuron that is involved in
the control of feeding in Helisoma[2], PBN – posterior buccal
nerve, VBN – ventral buccal nerve.

Figure 10
The distribution of dopaminergic neurons and axons in the
albumen gland of H. duryi (not to scale). Dopaminergic nerve
endings form a uniform network that is consistent across all
parts of the albumen gland (AG) except for the central
region, where the axons are parallel forming a nerve tract.
Neuronal cell bodies (open circles) are visible in the vicinity
of the tract. The nerve tract originates from the carrefour
(cf). A great number of closely packed together dopaminergic
cells (open circles) make up walls of the carrefour.
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ers [39–42] and can be explained by the fact that L. stag-

nalis is dextrally spiraled whereas H. duryi and

Planorbis corneus are sinistrally spiraled leading to the

restriction of some organs to one side of the snail's body.

Dopaminergic fibers were found in abundance through-

out the brain of H. duryi running in similar fashion as in

L. stagnalis. Helix pomatia and Planorbis corneus.

Comparison of the distribution of the TH-IR neurons to the 
distribution of glyoxylic acid-induced blue-green fluoresc-
ing neurons
In the cerebral and pedal ganglia a few blue-green fluo-

rescing cells did not correspond to TH-IR neurons. A

plausible explanation for this discrepancy can be the
overestimation of the number of blue-green cells in the

cerebral ganglia due to the presence of blue-green nerves

leaving the cerebral ganglia that may have interfered

with identification of the dopaminergic neurons (Fig.

6c). In the pedal ganglia the neurons that TH antiserum

failed to recognize were small and possibly contained in-

sufficient amount of the enzyme for the antibodies to

bind to. Nevertheless, most of the identified neurons

were consistent in their location and size after the use of
both techniques. Both techniques showed that all the

nerves leaving the brain contained some dopaminergic

fibers. More nerve fibers were localized with TH antise-

rum than with glyoxylic acid and they were of better con-

trast.

Comparison of the distribution of the dopaminergic axons 
in the albumengland of mated and virgin Helisoma duryi
Brisson and Collin [18] and Brisson [19] demonstrated

the presence of catecholamine-containing axons in the

albumen gland, carrefour and some other reproductive

organs in L. stagnalis and other species of pulmonate

snails and concluded that the catecholaminergic system

might be important to the carrefour region for transport

and orientation of genital fluxes. In our study using

HPLC-ED we provide proof that neurons and axons

present in the albumen gland and the carrefour are

dopaminergic and we describe their distribution in these

organs. We observed a tract of dopaminergic axons that

runs through the central region of the albumen gland

and originates from the carrefour (Figs. 2a,2c, 3a,3c, 10).

We also detected the nerve cell bodies in the vicinity of

the tract. In other parts of the gland dopaminergic axons

extended from the central tract and formed varicosities.

de Jong-Brink and Goldschmeding [17] showed that in L.
stagnalis the gonadal branch of the intestinal nerve,

Figure 11
Chromatograms showing an example of high performance
liquid chromatography with electrochemical detection for
the CNS and the albumen gland of randomly mating H. duryi
(DA – dopamine, 5-HT – serotonin, NE – norepinephrine,
LD – L-Dopa). NE eluted prior LD. a: elution profile of the
CNS. Note the NE peak is higher than the LD peak, and the
DA and 5-HT peaks show very clearly; b: elution profile of
the albumen gland. Note NE and LD peaks are barely visible,
5-HT peak is absent, DA peak is very clear. A distinct peak
that elutes prior to serotonin was not identified. Scale bar =
4.8 minutes.

Figure 12
Bar graph showing dopamine content in the central nervous
system (CNS) and the albumen gland (AG) of H. duryi meas-
ured by high performance liquid chromatography with elec-
trochemical detection and expressed in nmol of dopamine
per mg of protein (mean ± SEM), sample size 6. Abbrevia-
tions: rm – randomly mating, v – virgin, ftm – first time mated
snails.
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which originates from the visceral ganglion, innervates

the gonad, carrefour, albumen gland and its secretory

duct. The albumen gland and its secretory duct also re-

ceive intrinsic nervous input derived from neurons in the
carrefour region. Therefore, we suggest that the tract and

the cell bodies observed within the tract could constitute

the intrinsic innervation of the albumen gland that orig-

inates from the carrefour. Furthermore, a dopaminergic

neuron was found in the visceral ganglion of the CNS of

H. duryi, and since the albumen gland is innervated by

the intestinal nerve that originates from the visceral gan-

glion this could be the neuron that controls the albumen

gland activity. However, in order to establish this

premise conclusively a thorough tracing of the axon of

the dopaminergic neuron found in the visceral ganglion

is required.

HPLC analysis revealed that in the CNS of H. duryi sero-

tonin and dopamine were major monoamines whereas

norepinephrine was present in insignificant amounts

(Fig. 11). These data are in accordance with findings of

other researchers [3,24,28]. In the albumen gland

dopamine was the only monoamine, which is in agree-

ment with research conducted in our laboratory by Dr. S.

Mukai (unpublished results) who demonstrated that of

all neurotransmitters tested only dopamine caused a sig-

nificant increase in protein secretion by the albumen

gland.

No marked difference was noticed when the distribution

and the number of dopaminergic nerve endings in the al-

bumen glands of randomly mating and virgin animals

were compared. In addition, the dopamine concentra-

tion in both the CNS and the albumen gland of randomly

mating, virgin and first time mated animals (Fig. 12) did

not differ significantly between experimental groups.

Since the axons of the dopaminergic neurons stained

positively with anti-TH IgG and TH is an enzyme in the

dopamine synthetic pathway, it is reasonable to assume

that dopamine is synthesized in the axons of these cells

and therefore is not transported from the cell bodies in

the CNS. As a result it is perhaps not surprising that

dopamine levels in the CNS did not change much follow-

ing egglaying. A possible explanation for the lack of dif-

ference in the amount of dopamine present in the

albumen gland is that HPLC measured the dopamine

content only and as soon as dopamine is used to signal

the PVF release it is either resynthesized or taken back

into nerve terminals by a reuptake mechanism, which

commonly occurs in molluscs [43]

Conclusions
Our results represent the first detailed studies regarding

the catecholamine innervation and quantitation of neu-
rotransmitters in the albumen gland. Earlier research in

our laboratory established the importance of dopamine

in the snail's reproductive system, especially in the regu-

lation of protein secretion by the albumen gland. Our

data confirmed and extended these findings by localizing
the catecholaminergic neurons and axons in the albu-

men gland and the CNS of H. duryi using glyoxylic acid

and anti-TH IgG. Using HPLC-ED we identified these

neurons and axons as dopaminergic, reported monoam-

ines present in the albumen gland and the CNS, and

compared the dopamine content in the CNS and the al-

bumen gland of randomly mating, virgin and first time

mated snails.

The distribution of dopaminergic neurons in the brain of

H. duryi was similar to that of other gastropod snails.

Nerve fibers found in the albumen gland formed a nerve

tract with neuronal cell bodies present in the vicinity of

the tract in the central region, and a uniform network in

other areas of the gland. The nerve tract originated from

the carrefour. The visceral ganglion contains a dopamin-

ergic neuron and its axon runs within the intestinal

nerve, suggesting that this neuron could control the al-

bumen gland activity. No difference in dopamine quanti-

ty in the CNS and the albumen gland of snails of different

mating times was observed, which can be explained by

the local dopamine production within the albumen gland

axons or by a reuptake mechanism.

Materials and Methods
Animals
Randomly mating H. duryi were taken from the stock

population, which was raised in 6 L tanks containing

snails of different maturity, from recently hatched

youngsters to sexually mature adults. Virgin snails were

isolated 2–3 weeks after hatching and placed in separate

plastic containers. All animals were kept at 22°C and

photoperiod of 16L/8D. Snails were maintained in

dechlorinated water, which was changed once a week,

and fed boiled lettuce three times per week, occasionally

supplemented with fish food pellets. Virgin animals were

allowed to mate and within 24 hours after mating were

dissected. This group of animals was termed first time

mated snails.

Immunocytochemistry
The brain and the albumen gland of mated H. duryi were

dissected out in HEPES-buffered Helisoma saline (51.3

mM NaCl, 1.7 mM KCl, 4.1 mM CaCl2, 1.5 mM MgCl2, 5.0

mM HEPES, ph 7.4, 120 mOsm/L) and fixed in 4% para-

formaldehyde in 0.1 M phosphate buffer pH 7 at 4°C for

4 hours. Prior to fixation the albumen gland was subject-

ed to 0.5% protease treatment in phosphate buffer. After

fixation tissues were washed for 12 hours in phosphate

buffered saline pH 7.2 (PBS) containing 4% Triton X-100
and then processed for immunocytochemistry. The tis-
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sues were incubated with a monoclonal mouse anti-TH

IgG (Incstar, Stillwater, MN) diluted 1:1000 in PBS with

5% normal goat serum and 4% Triton X-100 for 72 hours

at 4°C. Prior to incubation with anti-TH IgG the albumen
gland was treated with 0.2% trypsin in PBS and 0.1%

CaCl2 for 20 minutes. Then the tissues were incubated in

goat anti-mouse IgG (1:100) conjugated to rhodamine

(Sigma-Aldrich, Oakville, On) in PBS with 5% normal

goat serum and 4% Triton X-100 for 12 hours at 4°C in

the dark. Between each step tissues were washed with

PBS several times. After several more rinses the tissues

were mounted between two coverslips (rectangular 60 ×
22 mm and circular 18 mm) in a 3:1 mixture of glycerol

and PBS. Prior to mounting a circle was made on each

rectangular coverslip with melted sealing wax (50%

Vaseline, 50% dental wax) to prevent tissue distortions.

Then the coverslips were affixed with adhesive tape to an

aluminium slide (80 × 36 × 1 mm) with a 25 mm circular

window so that the circular coverslip faced down within

the window. In such orientation the preparation could be

viewed from both sides. Specimens were viewed and

photographed with a Biorad MRC 600 confocal micro-

scope with a Krypton/Argon laser, YHS filterblock, sin-

gle channel, excitation filter 568 DF10 nm, dichroic

reflector 585 DRLP and an emission filter 585 EFLP nm.

The location of dopaminergic neurons was drawn onto

standardized maps. No staining was observed in the con-

trol experiments where the same procedure was followed

except for the absence of primary antiserum.

Glyoxylic acid histochemistry
The dopaminergic neurons and their axons in the albu-

men gland and CNS were visualized with the glyoxylic

acid-induced histofluorescence technique. The brain and

the albumen gland of mated and virgin H. duryi were

dissected out in HEPES-buffered Helisoma saline and

pinned in a Sylgard-lined dish containing 220 mM glyox-

ylic acid and 40 mM HEPES, pH 7.0, and incubated for

30 minutes at 4°C. Then tissues were unpinned and ar-

ranged on glass coverslip, dried at room temperature for

30 minutes, heated at 100°C for 4 minutes and mounted

in mineral oil between two coverslips (rectangular 60 ×
22 mm and circular 18 mm). Prior to mounting the same

procedure was followed as described above for the im-

munohistochemistry. The specimens were viewed and

photographed with Zeiss optics (Carl Zeiss Canada, To-

ronto, Canada) that consisted of a mercury lamp HBO

100 W/2 with modulator, vertical illumination by the III

RS condenser containing excitation filters BP 405/14,

chromatic splitter FT 420, and a barrier filter LP 418.

Emission spectra were measured using a Zeiss continu-

ous interference monochromator with a range of 400–

700 nm. With these filters two distinct colours were ob-

served: yellow, indicating serotonin-containing neurons
and blue-green, indicating catecholamine-containing

neurons [33]. Location of dopaminergic neurons was

drawn onto standardized maps. Distribution of seroton-

in-containing neurons in the Helisoma brain was de-

scribed elsewhere [31,44,45]. No staining was observed
in the control experiments where the same procedure

was followed except for the absence of glyoxylic acid.

HPLC-ED
Dopamine was assayed by using HPLC-ED. The CNS and

the albumen gland of randomly mating, virgin and first

time mated snails were dissected in HEPES-buffered

Helisoma saline then placed in 50 µl HPLC buffer (see

later) and kept on ice. The mixture was sonicated, centri-

fuged at 16,000 rpm for 10 minutes at 4°C and then fil-

tered through a 0.22-µm nylon filter. Ten microliters

were injected into a Brownlee RP-18 Spheri-5 HPLC col-

umn (4.6 mm × 22 cm). The mobile phase, pumped at 0.7

ml/minute, contained 75 mm NaH2PO4 (pH 2.75), 0.3

mM sodium octyl sulfate, 0.05 mM EDTA, 3.5% ace-

tonitrile and 5% methanol. Detection was achieved elec-

trochemically using an ESA model 5100 A detection

system coupled to an ESA model 5010 dual coulometric

detector (ESA, Inc., Bedford, MA). The first detector was

set at 0.025 V to act as a screen and dopamine was de-

tected using the second detector set at 0.2 V at a sensitiv-

ity 20 nA. A guard cell inserted before the injector valve

was set at 0.5 V to preoxidize possible contaminants in

the mobile phase. The output of the second detector was

recorded on a Spectra Physics 4270 integrator (Spectra
Physics, San Jose, CA), and dopamine was quantified us-

ing external standard method. Samples were spiked with

dopamine to confirm the identity of the oxidizable sub-

stance. In addition, the I-V curve for dopamine was

found to be identical for the peak eluting with authentic

dopamine. Samples were also spiked with norepine-

phrine, L-dopa and serotonin to confirm the identity of

other peaks. A Bradford protein assay (Bio-Rad, Her-

cules, CA) was done using human gamma globulin as a

standard to determine the amount of protein in each tis-

sue sample. The concentration of dopamine was ex-

pressed in nmol of dopamine per mg of protein per

tissue.

Abbreviations in the text
CNS – central nervous system

HPLC-ED – high performance liquid chromatography

with electrochemical detection

PBS – phosphate buffered saline

PVF – perivitelline fluid

TH – tyrosine hydroxylase
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TH-IR – tyrosine hydroxylase-immunoreactive

Abbreviations in the figures
AG – albumen gland

an – anal nerve

bc – buccal connective

B20 – neuron that is similar to B20 neuron in Aplysia

BG – buccal ganglia

CBC- cerebro-buccal connective

cc – cerebral commissure

cf – carrefour

CG – cerebral ganglia

cpc – cerebro-pedal connective

DA – dopamine

DB – dorsal bodies

ET – esophageal trunks

fn – frontolateral nerve

HBN – heterobuccal nerve

5-HT – serotonin

in – intestinal nerve

L or 1 – left

LD – L-Dopa

ln – lumen

LPeD1 – giant dopaminergic neuron present in left pedal

ganglion

mln – median lip nerve

N1a – neuron that is involved in the control of feeding in

Helisoma[2]

NE – norepinephrine

PBN – posterior buccal nerve

Pd – pedal ganglion

PI – pleural ganglion

plprc – pleuroparietal connective

pn – pedal nerves

Pr – parietal ganglion

pm – parietal nerve

R or r – right

V – visceral ganglion

VBN – ventral buccal nerve

vprc – visceroparietal connective

TH-IR – tyrosine hydroxylase-immunoreactive

tn – tentacular nerve
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